博客
关于我
相控阵天线均匀线阵方向图(五)------方向图函数的不同表达形式
阅读量:559 次
发布时间:2019-03-09

本文共 1629 字,大约阅读时间需要 5 分钟。

基本问题

        如何通过不同的表达形式得到一维线阵的同一个方向图?

源代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%        函数功能:得到8线阵的方向图%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%clc; clear all;close all;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%               参数设置%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%c=3e8;       % 光速f=500e6;     % 信号频率lamda=c/f;   % 波长d=lamda/2;   % 阵元间距N=8;         % 阵元个数theta0=0;    % 波束指向角度bujing=0.1;theta=-90:bujing:90;   % 扫描角取值范围n = [0:1:N-1]'; % 列矢量%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%               权值计算%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%W = exp(1j*2*pi*f*n*d*sin(theta0*pi/180)/c); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%               法1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for p=1:length(theta) % 扫描角取值范围         V = exp(1j*2*pi*f*n*d*sin(theta(p)*pi/180)/c);% 方向矢量     B1(p) =W'*V;   % 阵元功率叠加    '表示共轭转置   .'表示转置      endF1=abs(B1);             % 取信号的模F1=20*log10(F1/max(F1));% 归一化%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%               法2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%for p=1:length(theta) % 扫描角取值范围             B2(p) =sum(exp(1j*2*pi*f*n*d*(sin(theta(p)*pi/180)-sin(theta0*pi/180))/c));   endF2=abs(B2);% 取信号的模F2=20*log10(F2/max(F2));%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%               法3%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for p=1:length(theta)    % 扫描角取值范围    t(p)=pi/2*(sind(theta(p))-sind(theta0));   B3(p) =sin(N*t(p))/sin(t(p));    endF3=abs(B3); %取信号的模F3=20*log10(F3/max(F3));% F3=F3/max(F3);figure(1)plot(theta,F1,'-r*');hold on;plot(theta,F2,'-g^');hold on;plot(theta,F3,'-bo');grid on;xlabel('角度/度');ylabel('方向图');axis([-90 90 -50 0]);legend('法一','法二','法三');

仿真结果

在这里插入图片描述

转载地址:http://wiapz.baihongyu.com/

你可能感兴趣的文章
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 时事和见解【2023】
查看>>
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP、CV 很难入门?IBM 数据科学家带你梳理
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP入门(六)pyltp的介绍与使用
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:从头开始的文本矢量化方法
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
NLTK - 停用词下载
查看>>